Massachusetts Institute of Technology
Sign in

Bioengineering at MIT: Building Bridges Between the Sciences, Engineering and Health Care (Part One)

06/04/2005 9:00 AM Kresge
Douglas A. Lauffenburger, Ford Professor and Head of the Department of Biological Engineering, MIT; Linda G. Griffith, Professor, Biological Engineering and Mechanical Engineering ; ; Angela Belcher, Germeshausen Professor of Materials Science and Engineering, and Biological Engineering

Description: In Doug Lauffenburger's view, MIT's new bioengineering degree program is not merely justified, it is essential. Revolutionary changes in biological sciences specifically, in molecular biology and genomics have given scientists the means to understand and control both the building blocks and larger systems of living things. Now, says Lauffenburger, the "operation of biological functions needs to be understood in terms of biomolecular machines." But the hard part, he says, is "predicting what happens when you manipulate them. It's almost trial and error. That's where engineering comes in."

Linda Griffith provides one paradigm for such research. She is designing a scaffold on which to grow human cells for use in tissue implants. Using a "computer controlled process that builds complex 3D objects up from scratch," Griffith creates a device that mimics the complex structures of joints and other body parts _ suited for joint repair, or bone regeneration. Her research might someday produce organs for transplant. But Griffith's grander goal involves "putting surgeons out of business," by eliminating transplants altogether. She's building a "liver on a chip" _ growing liver cells on a tiny wafer with the architecture and molecular properties of actual liver cells. This biomechanical product can be used to test drug toxicity and gene therapies, and perhaps someday to model and block the growth of cancers.

Angela Belcher models her bioengineered devices on some of nature's most ingenious products, such as the incredibly strong and exquisitely structured abalone shell. She designs on a nanoscale, getting viruses and antibodies to work with inorganic materials. "How far can you push organisms?" Belcher wonders. To date, she's taught a nontoxic virus to recognize a specific metal used in a semiconductor wafer. Someday viruses could detect atomic defects in electronics. Belcher also describes virus scaffolds for growing semiconductor wires, and for generating lightweight batteries woven into soldier's uniforms. She's even looking into ways of spinning viruses, as spiders spin silk, for generating optical materials.



Host(s): Alumni Association, Alumni Association

Tape #: T20086

Comments (0)

It looks like no one has posted a comment yet. You can be the first!

You need to log in, in order to post comments.

MIT World — special events and lectures

MIT World — special events and lectures

Category: Events | Updated 1 year ago

Created
December 12, 2011 19:50
Category
Tags
License
All Rights Reserved (What is this?)
Additional Files


Viewed
6519 times

More from MIT World — special events and lectures

Personalized Energy

Personalized Energy

Added 5 years ago | 01:37:00 | 10424 views

Current Research III

Current Research III

Added 5 years ago | 00:32:38 | 3632 views

Biomaterials and How They Will Change our Lives

Biomaterials and How They Will Chan...

Added 5 years ago | 01:04:00 | 4978 views

Beyond the Bench: Preparing MIT Students for the Challenges of Global Leadership

Beyond the Bench: Preparing MIT Stu...

Added 5 years ago | 01:24:00 | 5588 views

Agents of Change: Model Partnerships with Academia

Agents of Change: Model Partnership...

Added 5 years ago | 01:19:00 | 3349 views

Plays Well With Others: Leadership in Online Collaboration

Plays Well With Others: Leadership ...

Added 5 years ago | 00:37:49 | 17085 views