Massachusetts Institute of Technology
Sign in Create Account

The Cell Cycle and Cancer

06/07/2006 1:00 PM 46-3002
Angelika Amon, Associate Professor of Biology, MIT;; Investigator, Howard Hughes Medical Institute

Description: We all start out as a single fertilized cell, and wind up, as fully formed humans, with 10 to the 13th cells. -The name of the game,” says Angelika Amon, is to replicate the genetic information in those cells accurately. -Only if that happens all the time and with high fidelity will you end up with a healthy individual.” Amon shows a beautiful video of dance-like cell division in the African blood lily, which demonstrates the migration of chromosomes to opposite ends of the cell -- prelude to a single cell becoming two daughter cells. It's -like a curtain opening,” Amon says in wonder. This process of cell division, she continues, is -highly conserved” among organisms. For instance, if a yeast cell contains a defect that prevents it from dividing correctly, plugging in the human equivalent of a protein to correct the defect will enable the yeast to begin dividing again. Amon describes how cells contain special proteins called growth factors that work together to inhibit or initiate cell division. -The cell puts in place layers and layers of controls, like an onion,” says Amon. If someone inherits a mutation that affects one of these growth factors, then cells may proliferate uncontrollably. Another route to cancer is if a cell's internal mechanisms for detecting DNA damage malfunctions, perhaps due to exposure to X-rays or UV rays. When these checkpoints break down, instead of putting the brakes on cell division, the cell will proceed unchecked through division with broken chromosomes, or extra chromosomes. Pieces of DNA lie around, information gets lost or amplified and -a mess ensues.” Researchers have identified several key chromosomes in which defects lead to malfunctioning growth factors or checkpoints. And they've begun to design new drugs that target the specific proteins involved in these errant cell growth pathways.

About the Speaker(s): Angelika Amon has been a faculty member of the Center for Cancer Research since 1999. Previously, she was a Whitehead Institute fellow.

She was born in Austria in 1967, and earned her bachelor's and doctoral degrees at the University of Vienna. She first came to the U.S. in 1994 for postdoctoral studies.

Amon has analyzed the yeast cell cycle as the first step in an effort to unravel the controls that govern cell-cycle progression. In 2003, she received the National Science Foundation's $500,000 Alan T. Waterman Award, NSF's highest honor for young scientists and engineers.

Host(s): School of Science, School of Science

Comments (0)

It looks like no one has posted a comment yet. You can be the first!

You need to log in, in order to post comments. If you don’t have an account yet, sign up now!

MIT World — special events and lectures

MIT World — special events and lectures

Category: Events | Updated 5 months ago

Created
December 13, 2011 13:01
Category
Tags
License
All Rights Reserved (What is this?)
Additional Files


Viewed
2454 times

More from MIT World — special events and lectures

A.B.L.E. Tech: Achieving Better Life Experiences for People with Injury, Disability and Aging Challenges Through 21st Century Technologies

A.B.L.E. Tech: Achieving Better Lif...

Added over 3 years ago | 01:32:00 | 4594 views

The Laser at 50

The Laser at 50

Added over 3 years ago | 01:05:00 | 7300 views

Why History Matters: International Law and the Origins of the Arab-Israeli Conflict

Why History Matters: International ...

Added over 3 years ago | 01:36:00 | 10523 views

Economic Policy Challenges: Microeconomics and Regulation

Economic Policy Challenges: Microec...

Added over 3 years ago | 01:29:00 | 7125 views

The Road from Copenhagen

The Road from Copenhagen

Added over 3 years ago | 01:54:00 | 9962 views

Vision: Challenges and Prospects

Vision: Challenges and Prospects

Added over 3 years ago | 01:01:00 | 1895 views